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Economic Scenario Generators (ESGs) are essential tools for insurance 

companies. The production of market-consistent scenarios requires the models to 

be calibrated with the current market information. Within ESGs, interest rate 

models focus the attention of practitioners. Their complexity has significantly 

increased over the last decade, and so has the need for fast and accurate pricing 

methods for derivatives. This paper describes an efficient swaptions pricing 

method based on density approximation with Fourier series under the LIBOR1 

Market Model with Displaced Diffusion and Stochastic Volatility (DD-SV-LMM) 

framework. A comparison to standard methods is made.

Motivations 
ESGs are the cornerstone of many processes in insurance 

companies such as the computation of risk management 

indicators, or the valuation of long-term commitments with 

optional warranties depending on the economic situation. An 

ESG is defined as a set of models used to project the joint 

behaviour of relevant economic or financial risk factors over 

multiple scenarios. In order to be consistent with current 

economic conditions, simulations should be generated by 

models calibrated to current market data: this is the so-called 

market-consistency. The Milliman Economic Scenario 

Generator2, that has been employed to lead the present work, 

is an ESG used worldwide.  

In the case of insurance companies, modelling interest rate 

risk is a priority because life insurance policies consist in 

long-term commitments embedding optional warranties that 

may be activated depending on policyholder behaviour in 

various economic environments. Moreover, bonds and 

interest rate derivatives constitute a major part of the asset 

allocation of insurance companies. This is why, for the sake 

of consistency, interest rate models are usually calibrated to 

European swaptions. 

Most interest-rate models fall into two categories: “short rate” 

model or “market” model. The former focusses on modelling 

the short rate, an unobservable factor corresponding to the 

return of an investment over an infinitesimal period, as in the 

Hull & White and G2++ models. 

 
1 The name of the model has been settled several years ago, motivated by use of the London Inter-Bank Offered Rate (LIBOR) 

as reference. Names of the models may be adapted in the future because LIBOR will no longer be published after June 2023. 

2 See https://www.milliman.com/products/economic-scenario-generator. 

The LIBOR Market Model (LMM) and its different versions, on the 

other hand, model quantities that are directly observable in the 

market. In their simplest specification, they provide a theoretical 

framework consistent with the use of the Black or Bachelier 

formulas. Adding a shift coefficient to “displace” the simulated 

distribution into the non-positive region (i.e., allowing it to generate 

negative rate environments) and stochastic volatility (to better 

match the observed skew in the market) yields the Displaced 

Diffusion with Stochastic Volatility LMM (DD-SV-LMM). 

In its original specification, the DD-SV-LMM contains too much 

randomness—roughly speaking—to be analytically tractable. 

To get an exploitable version of the model, some stochastic 

quantities are therefore “frozen” to their initial values to remove 

some hazard and thus simplify the model. This is the so-called 

freezing technique. This assumption yields a Heston-like model 

under which the moment-generating function can be 

numerically computed, and the European options can then be 

evaluated through moment-generating function integration. 

This method requires a significant computation time because 

the moment-generating function must be computed multiple 

times for each option to be priced. 

In the DD-SV-LMM, one has access to the (approximate) 

moment-generating function of the swap rate process, which 

allows us, by applying Fourier transformation, to recover the 

density function of the process. However, this transformation is 

costly from a numerical point of view as it requires numerical 

approximation of integrals based on Gaussian quadrature. 

Other methods have been proposed to efficiently approximate 

https://www.milliman.com/products/economic-scenario-generator
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the density function based on polynomial expansions (see 

notably [MEH21]). Those methods are competitive (both in 

terms of computational time and data replication accuracy) but 

their validity domain can be restricted in some cases. The so-

called “cosine expansion” method introduced in [FAN10] and 

presented in this document still takes advantage of the link 

between moment-generating and density functions but allows 

us, by applying a number of approximations, to perform 

computations without requiring cumbersome quadratures. In 

the end, we would be able to compute swaption prices based 

on this competitive approach. This method is aimed at reducing 

the computational time dedicated to each option price without 

excessive accuracy losses. 

In the end, this method contributes towards proposing 

efficient methods for the calibration of models forming the 

Milliman Economic Scenarios Generator. 

The DD-SV-LMM 
The basic interest rate product to introduce is the zero-coupon 

(ZC) bond: it is a contract that delivers one unit of currency at a 

future date 𝑇 whose price at time 𝑡 is 𝑃(𝑡, 𝑇). 

Let 𝑇𝑗 < 𝑇𝑗+1 be two dates. A forward rate agreement (FRA) is 

a contract in which two counterparties agree to exchange a 

fixed rate against a floating one for the accrual period between 

𝑇𝑗 and 𝑇𝑗+1. At any time 𝑡 prior to the beginning of the period 

(𝑡 ≤ 𝑇𝑗), there is a unique fixed rate that makes this contract 

arbitrage-free. This rate corresponds to the forward rate 𝐹𝑗(𝑡) 

and it can be expressed in terms of ZC bonds as: 

𝐹𝑗(𝑡) =
1

𝑇𝑗+1−𝑇𝑗
(

𝑃(𝑡,𝑇𝑗)

𝑃(𝑡,𝑇𝑗+1)
− 1). 

An interest rates swap (IRS) is a sequence of (off-market) 

FRAs over multiple time periods. Let 𝑇𝑚 < ⋯ < 𝑇𝑛 be a set of 

dates. An IRS corresponds to the exchange of a fixed and 

constant rate 𝑆(𝑡) for a fluctuating rate on the corresponding 

period. We have followed the convention in which the 

payments are made on dates {𝑇𝑚+1, … , 𝑇𝑛}. With the same 

arguments as for the FRA, the forward swap rate value at time 

𝑡 ≤  𝑇𝑚 can be defined as a function of ZC bonds or forward 

rates involved over the period3 [𝑇𝑚, 𝑇𝑛 ]: 

𝑆(𝑡) =
𝑃(𝑡,𝑇𝑚)−𝑃(𝑡,𝑇𝑛)

𝐵𝑠(𝑡)
= ∑ 𝛼𝑘(𝑡)𝐹𝑘(𝑡)𝑛−1

𝑘=𝑚 , 

where the accrual period length is ∆𝑇𝑖 = 𝑇𝑖+1 − 𝑇𝑖, 𝐵
𝑠(𝑡) =

∑ ∆𝑇𝑖−1𝑃(𝑡, 𝑇𝑖)𝑛
𝑖=𝑚+1  is the annuity of the swap and the 

stochastic weights are defined by 𝛼𝑘(𝑡) =
∆𝑇𝑘𝑃(𝑡,𝑇𝑘+1)

𝐵𝑠(𝑡)
.  

 
3 Note that this formula is not valid in the case of mismatched discounting. 

We ignore minor valuation adjustments needed for swaps 

which incorporate one or two business day payment delays to 

accommodate for the final rate fixing being unknown until the 

morning after for reformed benchmark rates. 

Both forward and swap rates, as functions of ZC bonds, are 

quantities directly observable on financial markets. In its 

primary version, the LMM assumes a lognormal type dynamic 

for those rates, allowing to use the Black formula for the pricing 

of derivatives on forward rates (floorlet, caplet). In present DD-

SV-LMM, the dynamics of forward rates are more complex. 

Still, as a function of forward rates, the dynamics of the swap 

rate—under an appropriate measure—can now be deduced 

from that of forward rates. For simplicity, we will only present 

the diffusion defining the swap rates. Note that the function 

linking swap rates and forward rates is independent of the 

modelling framework.  

To price swap rates derivatives, it is convenient to work under 

a probability measure, making the swap rate a martingale. This 

is the case of the swap-forward measure, denoted by ℚS, 

associated with the numéraire which appears in the definition 

of the swap rate. Calculation steps leading to the following 

dynamics are not elaborated here. The interested reader may 

refer to [WZ06] for a rigorous proof. 

Let 𝒁𝑡
𝑆 be a multidimensional Brownian motion under ℚS and 

Wt
S be a scalar Brownian motions under ℚS. In the DD-SV-

LMM, the evolution of the swap rate is specified by: 

{
d𝑆(𝑡) = √𝑉(𝑡) ∑ 𝜔𝑗(𝑡)(𝐹𝑗(𝑡) + 𝛿) 𝛾𝑗(𝑡)

𝑛−1

𝑗=𝑚
∙ d𝒁𝑡

𝑆 ,

d𝑉(𝑡) = 𝜅(𝜃 − 𝜉𝑆(𝑡)𝑉(𝑡))d𝑡 + 𝜖√𝑉(𝑡)d𝑊𝑡
𝑆,

 (1) 

where 𝑉(𝑡) is the instantaneous volatility of the swap rate 

parametrised by 𝜅, 𝜃, 𝜖 that are positive parameters, and 𝛾𝑗 is a 

bi-dimensional deterministic function modelling a part of the 

volatility structure of the 𝑗𝑡ℎ forward rate 𝐹𝑗: 

𝜔𝑗(𝑡) = 𝛼𝑗(𝑡) +
Δ𝑇𝑗

1 + Δ𝑇𝑗𝐹𝑗(𝑡)
∑ 𝛼𝑝(𝑡) (𝐹𝑝(𝑡) − 𝑆𝑚,𝑛(𝑡))

𝑗−1

𝑝=𝑚

, 

𝜉𝑆(𝑡) = 1 +
𝜖

𝜅
∑ 𝛼𝑗(𝑡) ∑

Δ𝑇𝑘(𝐹𝑘(𝑡) + 𝛿)

1 + Δ𝑇𝑘𝐹𝑘(𝑡)

𝑗

𝑘=1

𝜌𝑘(𝑡)‖𝛾𝑘(𝑡)‖

𝑛−1

𝑗=𝑚

, 

𝜌𝑘 is a deterministic function accounting for the correlation 

between 𝑘𝑡ℎ forward rate 𝐹𝑘 and stochastic volatility 𝑉(𝑡), and 𝛿 ≥

0 is the shift coefficient allowing us to generate negative rates.  
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Note that, for numerical experiments, we have worked with a 

piecewise constant deterministic volatility structure set as:  

𝛾𝑗(𝑡) = 𝛽𝑗𝑔(𝑇𝑗 − 𝑇𝑖) for 𝑇𝑖 ≤ 𝑡 < 𝑇𝑖+1,  

where 𝛽𝑗 is a bi-dimensional vector accounting for the inter-

forward correlation structure, 𝑔(𝑢) = (𝑎 + 𝑏𝑢)𝑒−𝑐𝑢 + 𝑑 for any 

𝑢 ≥ 0, and: 

𝜌𝑗(𝑡)‖𝛾𝑗(𝑡)‖ =
𝜌

√2
(𝛾𝑗

(1)
(𝑇𝑗 − 𝑇𝑖) + 𝛾𝑗

(2)
(𝑇𝑗 − 𝑇𝑖)). 

In the end, the parameters of the model to be calibrated are 

(𝑎, 𝑏, 𝑐, 𝑑, 𝜅, 𝜃, 𝜖, 𝜌). 𝛿 has been fixed in our experiments. 

As it stands, the model for the swap rate is too complex to be 

usable. A common practice is to approximate the diffusion (1) by 

replacing the stochastic quantities appearing in the definition of 𝜔𝑗 

and 𝜉𝑆 above by their initial values by assuming that they are of 

low variability. A recent study on the validity of this assumption has 

been made in [MEH21]. It amounts to approximate swap rates as 

linear combinations of forward rates with stochastic volatility 

whose drift is deterministic. The final model on the swap rates with 

which we will work in the remainder of this paper is the so-called 

“normal” frozen dynamics:  

{
d𝑆(𝑡) = √𝑉(𝑡) ∑ 𝜔𝑗(0)(𝐹𝑗(0) + 𝛿)𝛾𝑗(𝑡)

𝑛−1

𝑗=𝑚
∙ d𝒁𝑡

𝑆,

d𝑉(𝑡) = 𝜅(𝜃 − 𝜉0
𝑆(𝑡)𝑉(𝑡))d𝑡 + 𝜖√𝑉(𝑡)d𝑊𝑡

𝑆,

 (2) 

where: 

𝜉0
𝑆(𝑡) = 1 +

𝜖

𝜅
∑ 𝛼𝑗(0) ∑

Δ𝑇𝑘(𝐹𝑘(0) + 𝛿)

1 + Δ𝑇𝑘𝐹𝑘(0)

𝑗

𝑘=1

𝜌𝑘(𝑡)‖𝛾𝑘(𝑡)‖

𝑛−1

𝑗=𝑚

. 

For the sake of completeness, let us mention that, in some 

specification, Equation (2) may represent the dynamics of the 

logarithm of the swap rate (and not the swap rate itself); we would 

refer to this modelling framework as “lognormal” freezing. 

In the following, we will denote by 𝜙 the moment-generating 

function of 𝑆(𝑡), defined by 𝜙𝑚,𝑛(𝑥) = 𝔼𝑡
𝑆[𝑒𝑥𝑆(𝑇𝑚)]. When the 

swap rate is described by Equation (2), the characteristic 

function can be analytically derived using the affine property of 

the model (see [DABB17] for more details). 

The knowledge of this characteristic function is useful for 

pricing methods. Indeed, the spot price 𝑃𝑆(0; 𝑇𝑚, 𝑇𝑛, 𝐾) of a 

payer’s swaption of maturity 𝑇𝑚, tenor 𝑇𝑛 − 𝑇𝑚 and strike 𝐾, is 

given by:  

𝑃𝑆(0; 𝑇𝑚, 𝑇𝑛 , 𝐾) = 𝐵𝑠(0)𝔼𝑆[max(𝑆(𝑇𝑚) − 𝐾, 0)]

= 𝐵𝑠(0)(𝔼𝑆[𝑆(𝑇𝑚)𝕝{𝑆(𝑇𝑚)≥𝐾}]

− 𝐾𝔼𝑆[𝕝{𝑆(𝑇𝑚)≥𝐾}]). 

It can be proved (see [WZ06] and references therein for the 

details of the calculations) that each expectation in the above 

equation can be expressed as a complex integral of the 

moment-generating function 𝜙 extended over a domain of the 

complex field 𝒞 ⊂ ℂ. Namely: 

𝔼𝑆[𝑆(𝑇𝑚)𝕝{𝑆(𝑇𝑚)≥𝐾}] = (𝑆(0) + 𝛿) (
1

2
+

1

𝜋
∫ ℜ𝔢 (

𝑒−𝑖𝑢(𝐾+𝛿)𝜙(𝑢 − 𝑖)

𝑖𝑢
) d𝑢

∞

0

), 

𝔼𝑆[𝕝{𝑆(𝑇𝑚)≥𝐾}] =
1

2
+

1

𝜋
∫ ℜ𝔢 (

𝑒−𝑖𝑢(𝐾+𝛿)𝜙(𝑢)

𝑖𝑢
) d𝑢,

∞

0

 

where 𝑖 denotes the imaginary unit defined as satisfying 𝑖2 =

−1, ℜ𝔢 denotes the real part of a complex number for 𝑧 = 𝑧1 +

𝑖𝑧2 ∈ 𝒞, ℜ𝔢(𝑧) = 𝑧1 and 𝕝𝐴 is the indicator function of the event 

𝐴, defined by 𝕝𝐴(𝜔) = 1 if 𝜔 ∈ 𝐴, and is equal to 0 otherwise.  

Historically, this pricing method has been first used for pricing 

of the option in the popular Heston model widely used for 

equity modelling (see [HES93]). Therefore, in the numerical 

experiments presented in the final section of this paper, we will 

refer to it as the “Heston pricing method.”  

Cosine expansion 
The previous Heston-like formula for swaption prices is 

approximated in practice using Gaussian quadrature. This 

requires an important number (several hundreds) of calls to the 

integrated function, which is computed by solving Riccati 

equations. All in all, the Heston-like approach is quite time-

consuming. Alternatively, the spot price of a swaption can be 

written as the integral of the payoff function of the option 

against the density function of the swap rate process: 

𝑃𝑆(0; 𝑇𝑚, 𝑇𝑛 , 𝐾) = 𝐵𝑠(0)𝔼S[max(𝑆(𝑇𝑚) − 𝐾, 0)]

= 𝐵𝑠(0) ∫ max(𝑠 − 𝐾, 0)𝑓𝑇𝑚
(𝑠)d𝑠 (3)

+∞

−∞

 

where 𝑓𝑇𝑚
(𝑠) is the density function of 𝑆(𝑇𝑚).  

A straightforward calculation of this expectation is, however, 

impossible because there is no analytical expression for the 

swap rate density function in the DD-SV-LMM framework. One 

way to circumvent this issue is to derive an approximated 

density function using a Fourier expansion series. 

The cos-pricing method relies on the fact that the characteristic 

function 𝜔 ∈ ℝ ↦ 𝜙(𝑖𝜔) and the probability density function 𝑓𝑇 are 

linked together by Fourier transformation through the relations: 

𝜙(𝑖𝜔) = ∫ 𝑒𝑖𝑥𝜔𝑓𝑇(𝑥)d𝑥,
∞

−∞

 (4) 

𝑓𝑇(𝑥) =
1

2𝜋
∫ 𝑒−𝑖𝜔𝑡𝜙(𝑖𝜔)d𝜔

∞

−∞
.  

The Fourier transform of periodic functions can be expressed 

analytically as the sum of a convergent series. This property is 

used to derive alternative swaption prices. We first describe the 

Fourier transform of functions with finite support.  
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DENSITY CALCULATION 

A function 𝑓 is said to be supported on the interval [𝑎, 𝑏] if 

𝑓(𝑥) = 0 for all 𝑥 ∉ [𝑎, 𝑏]; it is said to be finitely supported over 

[𝑎, 𝑏] if max(|𝑎|, |𝑏|) < ∞, which will be assumed in the 

following. Primarily used for periodic functions approximation 

with cosine series, the Fourier series can provide optimal 

approximation of finitely supported functions. A function 𝑓 

finitely supported over [𝑎, 𝑏] can be considered as a (𝑏 − 𝑎)-

periodic function. A Fourier series expansion can then be 

performed on 𝑓. For functions supported on [0, π], the cosine 

expansion reads: 

𝑓(𝜃) =
𝐴0

2
+ ∑ 𝐴𝑘 cos(𝑘𝜃),

∞

𝑘=0

 

with 𝐴𝑘 =
2

𝜋
∫ 𝑓(𝜃) cos(𝑘𝜃)d𝜃

𝜋

0

. 

For a function 𝑓 supported on arbitrary compact interval [𝑎, 𝑏], 

the expression of the cosine expansion can be deduced using 

that [𝑎, 𝑏] as a linear transformation of interval [0, π]: 

𝑓(𝑥) =
𝐴0

2
+ ∑ 𝐴𝑘 cos (𝑘𝜋

𝑥−𝑎

𝑏−𝑎
)∞

𝑘=1 , 

where 𝐴𝑘 =
2

𝑏−𝑎
∫ 𝑓(𝑥) cos (𝑘𝜋

𝑥−𝑎

𝑏−𝑎
) d𝑥

𝑏

𝑎
. 

In practice, these expansions are truncated to a finite 

summation (or expansion) of order 𝑁 ∈ ℕ, so that numerically it 

is computed:  

𝑓(𝜃) ≈
𝐴0

2
+ ∑ 𝐴𝑘 cos (𝑘𝜋

𝑥 − 𝑎

𝑏 − 𝑎
)

𝑁

𝑘=1

. (5) 

 
NUMERICAL ILLUSTRATION 

We illustrate the cosine approximation series on normal and 

uniform probability distributions. Observe that the uniform 

distribution is indeed a finitely supported density over [0,1] 

while the normal one is not. Density approximations are plotted 

at different truncation orders 𝑁 (see formula [4]) to demonstrate 

the ability of accurately approximate target densities.  

FIGURE 1: APPROXIMATION OF A NORMAL DISTRIBUTION WITH COSINE 

SERIES AT DIFFERENT ORDERS 

 

It is seen in Figure 1 that a cosine-series efficiently 

approximates the normal distribution density function, as the 

successive approximations converge to the target density 

(plotted in black). 

FIGURE 2: APPROXIMATION OF A UNIFORM DISTRIBUTION WITH COSINE 

SERIES AT DIFFERENT ORDERS 

 

In Figure 2, the approximation of the uniform density is 

illustrated. We observe that there still is a convergence towards 

the target density (black line) but that the convergence is much 

slower due to the discontinuity of the uniform density function. 

Oscillations appear around the discontinuity points (also known 

as the Gibbs phenomenon). 

COSINE EXPANSION FOR SWAPTION PRICING 

For our problem of swaption pricing, we aim at applying such 

cosine expansions to compute the swap rate density function 𝑓𝑇𝑚
. 

However, there is no reason for 𝑓𝑇𝑚
 to be supported on finite 

intervals. To apply the cosine expansions to the swap rate density, 

we assume that we can approximate 𝑓𝑇𝑚
 by a function that is 

supported on a finite compact interval [𝑎, 𝑏], denoted by 𝑓𝑇𝑚

(𝑎,𝑏)
. To 

apply this technique, 𝑎, 𝑏 ∈ ℝ must be chosen such that the swap 

rate density is negligible on both ]−∞, a] and [b, +∞[, which in 

turns requires that lim
𝑥→+∞

𝑓(𝑥) =  lim
𝑥→−∞

𝑓(𝑥) = 0. These 

assumptions would allow us to:  

 Ensure the target density function can be approximated by 

a finitely supported function without losing too much 

information on the swap rate distribution 

 Ensure the Fourier transform of the approximating function 

(that is, the approximating characteristic function) is close 

to the Fourier transform of the original density function 

(that is, the target characteristic function)  

By properly chosen 𝑎, 𝑏 ∈ ℝ, 𝑓𝑇𝑚
 can be approximated by 

𝑓𝑇𝑚

(𝑎,𝑏)
, whose cosine series is characterised by the coefficients: 

𝐴𝑘 =
2

𝑏 − 𝑎
ℜ𝔢 {(∫ 𝑒𝑖𝑘𝜋

𝑥
𝑏−𝑎

𝑏

𝑎

𝑓𝑇𝑚

(𝑎,𝑏)
(𝑥)d𝑥) ∙ 𝑒−𝑖𝑘𝜋

𝑎
𝑏−𝑎} (6). 
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We will refer to this approximation method as the “cosine 

approximation series” in this paper. Furthermore, the 

characteristic function of the model can be recovered using 

Equation (4) on a finite number of points. For all 𝑘 ∈ ℕ: 

𝜙 (
𝑖𝑘𝜋

𝑏 − 𝑎
) = ∫ 𝑒𝑖𝑘𝜋

𝑥
𝑏−𝑎

∞

−∞

𝑓𝑇(𝑥)𝑑𝑥 ≈ ∫ 𝑒𝑖𝑘𝜋
𝑥

𝑏−𝑎

𝑏

𝑎

𝑓𝑇(𝑥)d𝑥, 

which can be injected in Equation (6) to approximate the 

Fourier coefficients as: 

𝐴𝑘 =
2

𝑏 − 𝑎
ℜ𝔢 {𝜙 (

𝑖𝑘𝜋

𝑏 − 𝑎
) ∙ 𝑒−𝑖𝑘𝜋

𝑎
𝑏−𝑎}. 

As with Equation (5), these approximating coefficients yield a 

relatively simple approximation of the target density function.  

Let us mention that the cosine expansion can also be applied in a 

lognormal framework. In this version of the DD-SV-LMM, the 

characteristic function of ln(𝑆(𝑇)) is known instead of that of 𝑆(𝑇). 

This requires a minor adjustment of the model defined by the 

dynamics in Equation (2). Similar calculations lead to the following 

expression for a swaption price in a lognormal framework: 

𝔼𝑆 [(𝑒
𝑆(𝑇)

𝐾 − 1)
+

] =
𝑒𝑏−𝑏−1

(𝑏−𝑎)
+ ∑ 𝐴𝑘 𝑉𝑘

𝑁
𝑘=1 , 

with 𝐴𝑘 =
2

𝑏−𝑎
ℜ𝔢 {𝜙 (𝑖𝑘𝜋

𝑥

𝑏−𝑎
) ∙ 𝑒−𝑖𝑘𝜋

𝑎

𝑏−𝑎}, 

𝑉𝑘 =
1

1+(
𝑏−𝑎

𝑘𝜋
)

2 [(−1)𝑘𝑒𝑏 − cos (−𝑘𝜋
𝑎

𝑏−𝑎
) +

𝑏−𝑎

𝑘𝜋
sin (−𝑘𝜋

𝑎

𝑏−𝑎
)]. 

 

Whatever the selected modelling framework is, the cosine 

expansion for swaption pricing can be summarised as follows: 

1. Computation of the moment-generating function of the 

model on a finite set of points (crucial step for reduction of 

computational time). 

2. Computation of the cosine series coefficients.  

3. Computation of the density function. 

SWAPTION PRICING 

We now present how the cosine approximation series can be 

employed in our context of swaption pricing. The method consists 

in approximating the swap rate density function using Equation (5) 

and injecting it into the swaption price formula of Equation (3).  

We then obtain an approximated swaption price as  

𝔼𝑆[max(𝑆(𝑇) − 𝐾, 0)] ≈ ∫ max(𝑥 − 𝐾, 0) (
1

𝑏−𝑎
+

𝑏

𝑎

∑ 𝐴𝑘cos (𝑘
𝑥−𝑎

𝑏−𝑎
)𝑁

𝑘=1 ) d𝑥. 

where 𝑎 <  𝐾 <  𝑏.  

The previous expressions can be further developed to get an 

analytical formula for the approximated swaption price: 

𝔼𝑆[max(𝑆(𝑇) − 𝐾, 0)] =
(𝑏−𝐾)2

2(𝑏−𝑎)
+ ∑ 𝐴𝑘 𝑉𝑘

𝑁
𝑘=1 , 

with 𝐴𝑘 =
2

𝑏−𝑎
ℜ𝔢 {𝜙(𝑖𝑘𝜋

𝑥

𝑏−𝑎
) ∙ 𝑒−𝑖𝑘𝜋

𝑎

𝑏−𝑎}, 

and 𝑉𝑘 = ∫ max(𝑥 − 𝐾, 0) 𝐴𝑘cos (𝑘
𝑥−𝑎

𝑏−𝑎
) d𝑥

𝑏

𝑎
= (

𝑏−𝑎

𝑘𝜋
)

2
((−1)𝑘 −

cos (𝑘𝜋
𝐾−𝑎

𝑏−𝑎
)), for 𝑘 ≤ 𝑁.  

Swaptions can now be priced with 𝑁 calls to the characteristic 

function. The optimal series truncation order strongly depends 

on the density function truncation interval [𝑎, 𝑏]. However, there 

are no analytical results backing the appropriate choice for 𝑎 

and 𝑏. This is an important issue because the choices of 𝑎 and 

𝑏 have crucial implications on the convergence of the method 

as they can impair both convergence speed and accuracy, as 

exposed in the following figures. [FAN10] proposed an interval 

based on the cumulants of the distribution: 

[𝑎, 𝑏] ≜ [𝜉1 − 𝐿√𝜉2 + √𝜉4, 𝜉1 + 𝐿√𝜉2 + √𝜉4 ] with 𝐿 = 10, (7) 

𝜉1 = 𝔼𝑆[𝑆(𝑇)] = 𝑆(0), 

𝜉2 = 𝔼𝑆[(𝑆(𝑇) − 𝔼𝑆[𝑆(𝑇)])2], 

𝜉4 = 𝔼𝑆[(𝑆(𝑇) − 𝔼𝑆[𝑆(𝑇)])4] − 3(𝜉2)2. 

This choice has proven to perform in a satisfying way in 

multiple numerical applications.  

ILLUSTRATIVE APPLICATIONS 

To illustrate the impact of the choice of those coefficients 𝑎, 𝑏, 

we depict in Figure 3 a cosine expansion performed on a given 

centred Gaussian distribution of standard deviation 𝜎 = 1 with 

a fixed truncation order 𝑁. Three expansions have been 

performed, with different values of 𝑎 and 𝑏: namely, we 

consider (𝑎, 𝑏) ∈ {(3𝜎, −3𝜎), (5𝜎, −5𝜎), (10𝜎, −10𝜎)} and we 

compare them to the exact density functions of the Gaussian 

distribution (analytically known). 

FIGURE 3: APPROXIMATION OF A NORMAL DISTRIBUTION WITH COSINE 

SERIES AT ORDER 8 FOR DIFFERENT TRUNCATION INTERVALS 
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We observe that a tight interval [𝑎, 𝑏] leads to loss of 

information on the tails of the distribution while a loose interval 

induces a slower convergence towards the reference density. 

In an experiment illustrated in Figure 3, the distribution was 

analytically known and thus setting a convenient interval [𝑎, 𝑏] 

in the function of the parameter of the target density was 

possible. In practice, this is not possible. In Figure 4, we 

provide an experiment in which the cosine expansion is applied 

to the swaption pricing problem. Namely, using parameters 

previously calibrated with the reference Heston-like method, 

258 swaptions are priced with the [−1, 1] interval on one hand 

and with the adjusted interval based on the cumulants defined 

above in Equation (7) on the other hand. The sum of the 

squared error between the prices computed with the reference 

method and the prices computed with the cos-pricing method is 

represented with respect to the expansion order 𝑁 in Figure 4. 

The parameters used to perform this numerical experiment are 

the following: 

(𝑎, 𝑏, 𝑐, 𝑑, 𝜅, 𝜃, 𝜖, 𝜌, 𝛿)

= (0.080, 0.00022, 0.053, 0.025, 0.10, 0.46, 0.31, 0.99, 0.1). 

FIGURE 4: ACCURACY OF THE COS-PRICING METHOD FOR DIFFERENT 

APPROXIMATION INTERVALS WITH RESPECT TO THE 

EXPANSION ORDER 

 

Both intervals provide relatively fast convergence towards the 

reference prices; yet the adjusted interval built using cumulants 

provides much faster convergence than the loose interval [−1,1]. 

When handling the cos-expansion series, the choice of the 

approximation interval must be systematically monitored because 

it is a key leverage to improve the method performances. 

We then perform simple experiments in which we compute 

swaptions prices by assuming the swap rate is distributed 

following a Gaussian (with mean 0 and variance 1/300) or 

uniform (over [−0.1, 0.1]) densities. In these cases, the value of 

𝔼𝑆[(𝑆(𝑇) − 𝐾)+] can be computed via closed-form formulas. 

Those exact prices are then compared to what is computed 

using the cosine expansion approximation in Equation (5), at 

different expansion orders (i.e., different values of 𝑁). 

FIGURE 5: COS-PRICING WHEN THE SWAP RATE IS DISTRIBUTED 

ACCORDING TO A GAUSSIAN DENSITY 

Strike Order 2 Order 4 Order 8 Target 

-0.02 0.03506 0.03537 0.03441 0.03440 

0.00 0.02415 0.02415 0.02305 0.02303 

0.02 0.01506 0.01537 0.01441 0.01440 

FIGURE 6: COS-PRICING WHEN THE SWAP RATE IS DISTRIBUTED 

ACCORDING TO A UNIFORM DENSITY 

Strike Order 5 Order 10 Order 50 Target 

-0.02 0.03533 0.03599 0.03600 0.03600 

0.00 0.02420 0.02494 0.02500 0.02500 

0.02 0.01533 0.01599 0.01600 0.01600 

It is first observed in the tables in Figures 5 and 6 that in all 

experiments, the cosine expansion method does converge 

towards the exact prices. Moreover, this method provides very 

accurate results as of the very first expansion orders. 

DD-SV-LMM calibration 
Before going any further, let us specify our terminology. In the rest 

of this paper: prices induced by pricing formulas derived under the 

DD-SV-LMM framework (such as the cos-pricing or the Heston-

like methods presented in this paper) will be referred to as “model 

prices.” Prices extracted from the market will be referred to as 

“market prices.” Finally, prices obtained by Monte Carlo 

simulations will be referred to as “Monte Carlo prices.” 

CALIBRATION FRAMEWORK 

As stated in the Motivations section above, the DD-SV-LMM 

framework is calibrated on swaption prices quoted on the 

market. In fact, an adequation metric between market and 

model prices is defined and minimised. Because swaptions are 

quoted through implied volatilities it would seem natural to set 

volatilities as reference quantities to replicate. Yet prices have 

been chosen instead of volatility because it is the raw output of 

pricing formulas. 

The metric used for calibration is the root mean square relative 

error between model and market prices defined as follows: 

RMSE = √
1

𝑁data

∑ (
Pricemodel − Pricemarket

Pricemarket

)
2

 

Several calibration experiments have been undertaken on 

multiple sets of market prices. Those calibration data gather 

three economies considered at five dates, including the 

turmoiled data of the first quarter (Q1) of 2020 with the COVID-

19 pandemic outbreak and Q1 2022 with the trigger of the war   
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in Ukraine. At each date, the number of euro market data that 

are replicated is of 𝑁data = 258, composed of at-the-money 

normal implied volatilities whose maturities and tenors range 

within {1,2,3,4,5,7,10,15,20,25,30} and away-from-the-money 

data of tenor 10 years and (relative) strikes within 

{±25 bips, ±50 bips, ±100 bips, ±150 bips, ±200 bips}. 

CALIBRATION RESULTS 

The first concrete improvement of the cosine expansion 

method is the calibration speed. Indeed, pricing a set of 

swaption took 4.56 milliseconds and calibration took five 

seconds, with a 30th-order cosine-expansion—as observed in 

Figure 4 above, the expansion error settles down as of 𝑁 = 30, 

motivating our choice—whereas the reference method took, 

respectively, 17.2 milliseconds (durations obtained by 

averaging over 2,56 ⋅ 106 calls to the pricing function) and 16 

seconds to achieve the same tasks. 

One can worry that this gain in computational time is achieved 

at the cost of a lower quality in the fit of market data. However, 

this is not the case and the cosine expansion method performs 

very well also in terms of data replication. Indeed, cosine 

expansion series allow for an accurate fit of market prices with 

an average root mean square error (RMSE) over 15 

calibrations of 1.50% for cosine approximation in a lognormal 

framework that should be compared with the RMSE of 1.49% 

obtained with the reference method. Note that those 15 

calibration experiments have been realised using different 

market data (at different dates and on different economies) so 

that we can assess the stability of the proposed method. We 

provide in Figure 7 the box plots of the calibration errors 

obtained as outputs of these 15 minimisation procedures we 

have considered. Namely, the box plots contain RMSE 

between market data and model quantities obtained as outputs 

of calibrations (on the left of Figure 7) and the RMSE between 

model quantities and simulated quantities (on the right of 

Figure 7). It includes the fit accuracy for the reference Heston-

like method and the cosine expansion method applied in 

lognormal framework. 

FIGURE 7: ADEQUATIONS METRICS BETWEEN MARKET/MODEL AND 

MODEL/MONTE CARLO VALUES 

 

 

One can see on the plot that the two versions of the cos-pricing 

perform well enough to compare to the reference Heston-like 

method. The replication of market data by the model (observed in 

the plot “Market vs. Model”) is very close to what was obtained 

with the reference method. Moreover, cosine expansion seems to 

induce fewer variances on the distance between model prices and 

volatilities and Monte Carlo (simulated) ones. In the plots in 

Figures 8 and 9, we provide the replication (by calibrated models) 

of prices and implied volatilities of swaptions observed in the euro 

market, as of 31 March 2022, for 1 year (1Y) x 10 years (10Y) 

(Figure 8) and for 10 years x 10 years (with the convention, 

maturity x tenor, in Figure 9).  

FIGURE 8: PRICE AND VOLATILITY SMILE FOR A 1Y X 10Y SWAPTION 

 

 

FIGURE 9: PRICE AND VOLATILITY SMILE FOR A 10Y X 10Y SWAPTION 
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FIGURE 9: PRICE AND VOLATILITY SMILE FOR A 10Y X 10Y SWAPTION 

(CONTINUED) 

 

All the experienced methods provide satisfactory results in 

terms of data replication. The nonlinear transformation between 

prices and implied volatilities preserves the fact that the 

lognormal framework outperforms the normal one. 

Conclusion 
The development of sophisticated interest rates models 

improved the ability to replicate market data at the expense of 

a significant loss of analytical tractability and an increase of the 

computational requirements. The fundamental need of 

economic scenario generators in the insurance business 

pushes towards a constant improvement in calibration 

performance. With that in mind, this paper provides an 

alternative pricing method based on density cosine-series 

approximations applied to swaptions under the DD-SV-LMM 

dynamics. This method offers a significant gain in computation 

time efficiency. Its accuracy has not been directly verified but 

market price consistency has been maintained through 

calibration. The work presented above can be extended to any 

financial model dedicated to other risk factors and different 

option types, at the sole conditions that the moment-generating 

function of the underlying asset is available. 
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