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Climate change, partly caused by human activities, is already having 

an impact on our society. According to the latest Intergovernmental 

Panel on Climate Change (IPCC) report of August 2021,1 the 

concentration of CO2 in the atmosphere was at its highest level in 

2019 in the last 2,000 years. 

An increase in Earth's surface temperature will cause several problems such as extreme changes in weather 

events (heat waves, heavy precipitation, droughts etc.) by increasing their frequency and intensity.  

Two main impacts can be identified:  

 The French Insurance Federation (FFA) has published a report2 in which the impacts of climate change on 

the insurance sector in France are studied for 2040. The increase in the cost of claims due to climate change 

is estimated at 21 billion euros over the period 2014 to 2039 compared to 8 billion euros over the period 

1988 to 2013. The study predicts that claims caused by natural hazards will reach 92 billion euros in 2040 

(an increase of 90%).  

 Climate change will also have an impact on health and mortality. According to a report3 published by the World 

Health Organisation (WHO), between 2030 and 2050 climate change is expected to result in nearly 250,000 

additional deaths per year globally due to childhood undernutrition, malaria, diarrhea and heat stress. 

As these events will affect the whole world, (re)insurers will need to improve their models to cope with climate 

change: by having a better understanding of the climate phenomena and their consequences and by taking into 

account projection assumptions. 

Executive Summary 
For the main climatic causes of death, i.e., those for which there are a significant number of deaths, a Lee-Carter 

type of modelling can be applied. 

The objective of this paper is to propose a model to capture the impact of climate risks on mortality. The model 

constructed is derived from a Lee-Carter model and is adapted to capture the impact of a specific cause on 

overall mortality rates. The risk considered in the following case studies is the "exposure to high temperatures" in 

France and in the US (at the state level: in this paper we will present the results obtained for the state of 

Oklahoma). The objective is to develop a model and make projections for mortality shock values.  

The selected climate models for the different geographical areas studied include climate variables related to 

temperature. These variables explain the observed peaks in deaths due to summer heat waves. The global 

model includes a term capturing the global mortality without climatic causes, and a term modelling only the 

mortality due to high temperatures. 

 
1 IPCC. Climate Change 2021: The Physical Science Basis. Retrieved 7 December 2022 from https://www.ipcc.ch/report/ar6/wg1/. 

2 See https://www.mrn.asso.fr/wp-content/uploads/2018/05/etude_changement_climatique_et_assurance_a_lhorizon_2040.pdf 

3 WHO (5 December 2018). Health and Climate Change. Retrieved 7 December 2022 from https://www.who.int/news-room/facts-in-

pictures/detail/health-and-climate-change. 

https://www.ipcc.ch/report/ar6/wg1/
https://www.mrn.asso.fr/wp-content/uploads/2018/05/etude_changement_climatique_et_assurance_a_lhorizon_2040.pdf
https://www.who.int/news-room/facts-in-pictures/detail/health-and-climate-change
https://www.who.int/news-room/facts-in-pictures/detail/health-and-climate-change


MILLIMAN WHITE PAPER 

Modelling the impact of climate risks on mortality 2 December 2022 

The resulting model performs well in predicting observed mortality rates. Moreover, it performs better than a 

classic Lee-Carter model according to the 𝑅 
2 and the Akaike information criterion (AIC) and Bayesian information 

criterion (BIC). 

The impact of high temperatures is clearly observable at high ages (over 65 years). The mortality shocks—

calculated according to the European Insurance and Occupational Pensions Authority (EIOPA) methodology—

incorporating the modelling of the impact of high temperatures are on average 6.12% larger than the 

conventional shocks provided by a classic Lee-Carter model. 

For climatic causes with fewer deaths, such as vector-borne diseases, it is not possible to apply the model 

developed earlier. Specific modelling needs to be explored: for mosquito-borne diseases, a refined 

Susceptible/Infected/Recovered (SIR)-type model could be appropriated. 

Scope and data  
SCOPE 

For this paper, we chose to focus on France and a specific state in the US with one specific climatic cause: 

exposure to high temperatures.  

In France, there have been significant heat waves: since 1947, 41 heat waves hit France with different intensities, 

with a major heat wave in 2003 (more than 12,000 deaths). 

The climate in the US is not homogeneous throughout the country as not all states are subject to heat waves. The area 

extending over several states in the southwest of the US is the one presenting heat waves. As our model does not 

produce consistent results for states outside of this region, the state of Oklahoma, which is prone to heat waves, is 

selected to present the results. 

DATA 

This study combines the use of three databases: one for the mortality linked to the specific cause (Global Health 

Data), one for the global national mortality (Human Mortality Database) and one for the climate variables.  

 Global Health Data (GHD): This database is published by the Institute for Health Metrics and Evaluation 

(IHME). GHD is constructed with the death numbers classified by different parameters (age, territory, 

years etc.) and particularly by the cause of death. The selection of death numbers relative to one specific 

risk or cause is possible on this database. On the “pollution” cause, for instance, we can find all the 

deaths caused by pollution, including deaths occurring from the increase in prevalence of type 2 diabetes 

due to exposure to pollution. This database considers mortality estimates found in the literature and has a 

history from 1990 to 2019.  

FIGURE 1: FRENCH DEATH RATE ATTRIBUTABLE TO HIGH TEMPERATURE EXPOSURE (BOTH SEXES, FRANCE, FOR 100,000)  

 

Source: GBD database. 
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 Human Mortality Database (HMD): The HMD is the reference for the death data used for actuarial 

purposes [3]. The calibration period is from 1990 to 2018. 

 Climatic and meteorological database: This database contains several climate variables including the 

temperature, rainfall, sunny period and wind-related data whose source depends on the country considered. 

The database containing the climatic variables for France is provided by Météo France.4 The climate 

variables include the number of days above a certain temperature (30°C, 35°C, 40°C), rainfall, wind-related 

data, sunny period and minimum/maximum/mean temperatures. All the data are classified by monthly values 

and by stations located through France. The history is from 1990 to 2021. Moreover, a relevant period to 

focus on the high temperatures is defined: the variables are built on summertime (June, July and August), in 

order to better capture the effect of heat waves. 

The US study is based on climate variables from the Global Historical Climatology Network Daily (GHCND) 

database provided by the National Oceanic and Atmospheric Administration (NOAA). The database contains 

daily weather information for over 10,000 stations in the US. Per weather station and per day, several climate 

variables are available such as recorded temperatures. For each weather station and for each day since 1990, 

the maximum and minimum recorded temperatures are kept in order to construct variables such as the 

maximum temperature per month, or the number of days exceeding different high temperature thresholds. 

Modelling 
ADAPTATION OF THE CLASSICAL LEE-CARTER MODEL 

The first goal of the study is to implement a model which captures the mortality due to climatic causes. The 

proposed model derives from a Lee-Carter model [2], which has been adapted to isolate the mortality due to  

the climate.  

ln(𝜇𝑥,𝑡) =  𝛼𝑥 +  𝛽𝑥
𝑜𝜅𝑡

𝑜 + 𝛿𝑥
𝐶𝐶𝑡 

The purpose of the term 𝜷𝒙
𝒐𝜿𝒕

𝒐 is to capture the global mortality which does not consider the climate cause. Note 

that 𝒄 is related to the climate cause of mortality while 𝒐 is related to other causes.  

The main objective of this model is to capture the difference of mortality on a specific climatic cause. The final 

goal is to compute mortality shocks and compare them to the shocks computed by a classic Lee-Carter model. 

CONSTRUCTION OF A CLIMATE INDEX 

Considering all the available climate variables, the goal is to select the best climate variables that can explain the 

mortality rates related to the climate cause. The method used is a linear regression. To select the best variables, 

a stepAIC procedure is performed: this method computes the AIC by calculating all the possible variable 

combinations that provide a minimal AIC. This method is applied on the climate variables.  

Then a p-value study is performed to find what are the best climate variables to explain the global mortality rates of the 

climate cause. The more significant climate variables are chosen.  

Thus, the final climate index 𝑪𝒕 follows the following three-parameter linear equation: 

𝐶𝑡 = 𝑎 + 𝑏𝑇𝑋𝑡   

where 𝒂, 𝒃 are the linear regression parameters, and 𝑿𝒕 is the vector of climate variables of year 𝒕. 

HARVESTING EFFECT 

The harvesting effect refers to the fact that fragile people are primarily affected by an event that causes excess 

mortality in the general population. Without this event, these people would have died in the days or weeks that 

follow. The consequence of this harvesting effect is that the event is followed by a period of under-mortality. 

  

 
4 Météo France. Public Data. Retrieved 7 December 2022 from 

https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=115&id_rubrique=38. 

https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=115&id_rubrique=38


MILLIMAN WHITE PAPER 

Modelling the impact of climate risks on mortality 4 December 2022 

To model this effect, two parameters are added to the climate index combining the climate data of the year of 

study and the previous year. 

𝐶𝐼𝑡 = 𝑎 + 𝛼(𝑏𝑇 𝑋𝑡 ) +  𝛾(𝑏𝑇 𝑋𝑡−1 )  

where 𝜶 represents the immediate climate impact, and 𝜸 represents the harvesting effect. 

AGE RANGE CONSTITUTION 

Climate mortality impacts the population differently by age. For this reason, a division of ages into three 

classes is considered in order to reflect the impact of climate mortality by age while remaining at a sufficiently 

large scale to have enough deaths in each age class. Moreover, this division depends on data availability.  

For the following, we set: 

 𝑥0 = 0 , 𝑥1, 𝑥2 , 𝑥3 = 111 

 The age classes are built as: ∀𝑖 ∈ [0,2] , 𝑐𝑖 = [𝑥𝑖 , 𝑥𝑖+1 − 1] 

MODEL 

The calibration of the model is done in three steps. The final calibration step considers continuous ages, whereas 

the first steps of the calibration consider age classes in order to more accurately calibrate the mortality related to 

climate risk. The beginning equation for the calibration process is the following:  

ln(𝜇𝑐𝑖,𝑡) = 𝛼𝑐𝑖
+ 𝛽𝑐𝑖

𝜅𝑡 + 𝛿𝑐𝑖
𝐶𝑡 

1. Estimation of mortality related to climate risk: 

ln(𝜇𝑐𝑖,𝑡) = 𝛼𝑐𝑖
+ 𝛽𝑐𝑖

𝜅𝑡 + 𝜹𝒄𝒊
𝑪𝒕 

a. Calibration of 𝜶𝒄𝒊
 by using a Lee-Carter model on 1990-2018 mortality data (HMD). The 𝛼𝑐𝑖

 is three 

vector parameters for the three age classes.  

b. Calibration of the climate index (𝒂, 𝒃) by using a linear regression between the death rate of the 

climate cause and climate variables (see the Construction of a Climate Index section above). 

c. Calibration of 𝜹𝒄𝒊
, by minimising the residuals without the harvesting effect, which are  

𝑅𝑐𝑖,𝑡 =  ln( 𝜇𝑐𝑖,𝑡) − 𝛼𝑐𝑖
− 𝛿𝑐𝑖

𝐶𝑡 

During this calibration, a peak function is used to emphasise the mortality excess of each age class.  

2. Integration of the harvesting effect: By the calibration of 𝛼, 𝛽. This step integrates the harvesting effect 

by replacing 𝐶𝑡 by 𝐶𝐼𝑡. The harvesting parameters are found by minimising the previous residuals with the 

harvesting effect:  

𝑅𝑐𝑖,𝑡 =  ln(𝜇𝑐𝑖,𝑡) − 𝛼𝑐𝑖
−  𝛿𝑐𝑖

(𝑎 + 𝛼(𝑏𝑇 𝑋𝒕 ) +  𝛾(𝑏𝑇 𝑋𝒕−1 )) 

3. Calibration of the global age-continuous mortality rates: At this final step, we convert all the age-class 

parameters in age parameters, and the equation becomes: 

ln(𝜇𝑥,𝑡) = 𝜶𝒙 + 𝜷𝒙𝜿𝒕 +  𝛿𝑥 𝐶𝐼𝑡   

We consider for this part the following residuals (by removing the 𝛼𝑥): 

𝑅𝑥,𝑡 =  ln(𝜇𝑥,𝑡) − 𝛿𝑥𝐶𝐼𝑡 

Final calibration consists in applying a Lee-Carter model on the residuals 𝑅𝑥,𝑡  to find the 𝜶𝒙, 𝜷𝒙  

and 𝜿𝒕 parameters. 
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France case study: Heat exposure 
The age groups chosen for France are, according to the available data, 0-25 years (young people), 25-65 years 

(working population), and 65 years and over (seniors). 

The variables selected for the construction of the climate index are: 

 𝑇𝑡
35: The average number of days where the temperature is above 35°C during summertime of year 𝑡. 

 𝑇𝑡
40: The average number of days where the temperature is above 40°C during summertime of year 𝑡. 

The two climate variables (Figure 2) are correlated with a 62.54% coefficient, but they are kept because they do 

not have the same level of information and are useful to explain the death rates.  

FIGURE 2: AVERAGE NUMBER OF DAYS ABOVE 35°C (LEFT) AND 40°C (RIGHT) DURING SUMMERTIME 

 

The climate index is constructed using the regression between the two climate variables and the climate mortality rates 

(Figure 3).  

FIGURE 3: CLIMATE INDEX AND ORIGINAL DEATH RATE IN FRANCE 

 

The fit is good (𝑹𝟐 ≈ 𝟖𝟔%) and the trend of climate-caused mortality over time can be explained with only these 

two climate variables. Thus, the final climate index 𝑪𝒕 follows a three-parameter linear equation: 

𝐶𝑡 = 𝑎 + 𝑏𝑇𝑡
35 + 𝑐𝑇𝑡

40  

where 𝑎, 𝑏, 𝑐 are the linear regression parameters. 

Figure 4 illustrates the three death rates: the original death rate (in blue), the death rate from a Lee-Carter 

model (in green) and the death rate for the climate Lee-Carter model (in red). Note that, for the age of 75, the 

two Lee-Carter models are very correlated. 
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FIGURE 4: COMPARISON OF THE DIFFERENT MODELLING – 75 YEARS OLD 

 

The 𝑅 
2 coefficients between the original death rates and the Lee-Carter models are plotted in Figure 5. The two 

models are similar in the fit, but one can see that, on high ages, the climate model is better than the original Lee-

Carter model. 

The fit is computed between the two Lee-Carter models (classic and climate) and the original death rates, using 

the 𝑅 
2 measure. The climate model is better than the Lee-Carter model on 61.82% of the ages (and on 93.64% 

of the ages if we consider a tolerance on the 𝑅 
2 of 0.5%). 

FIGURE 5: 𝐑 
𝟐 FITTING COEFFICIENTS BETWEEN THE TWO MODELS 

 

When evaluating the goodness-of-fit of different models, it is generally anticipated that models with more parameters 

provide a better fit to the data. To rule out the possibility that the better fit observed in a model is the result of over-

parametrisation and to compare the relative performance of several models, we also use information criteria which 

modify the maximum likelihood criterion by penalising models with more parameters. Two of these criteria are the 

AIC and the BIC, with lower values of AIC and BIC being preferable. It can be observed that the climate Lee-Carter 

model has a lower AIC/BIC than its classic version, as shown by the table in Figure 6. 

FIGURE 6: AIC/BIC BETWEEN THE TWO MODELS 

CRITERION CLASSIC LC CLIMATE LC 

AIC  42,877   42,453  

BIC  44,390   43,966  
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US case study: Heat exposure in Oklahoma  
Note that the age groups chosen for the US are slightly different from those used for France: 0-49 years, 50-69 

years, and 70 years and over. 

For the US, the climate index is built for each state. Therefore, the 𝑅 
2 score of the regression of climatic mortality 

rates against climatic variables is variable across states (Figure 7). A selection of variables at the state level is made 

in order to build the climate index. The results vary from one state to another: for states that are minimally affected 

by heat waves, even if the 𝑅 
2 score is correct, the model does not present consistent results. 

FIGURE 7: 𝐑 
𝟐 SCORE BY STATE 

 

The fit of climate mortality rates as a function of climate variables in Oklahoma is good (𝑹𝟐 ≈ 𝟗𝟐%) and the trend 

of climate mortality over time can be explained with eight climate variables selected from 41 (Figure 8). 

 

FIGURE 8: CLIMATE INDEX AND ORIGINAL DEATH RATE IN 

OKLAHOMA  

 

FIGURE 9: COMPARISON BETWEEN THE 3 OKLAHOMA DEATH 

RATES FOR 75 YEARS OLD 

 

Figure 9 provides a comparison of the original death rates, classic Lee-Carter model results and climate Lee-

Carter model results in Oklahoma. For the age of 75, the two Lee-Carter models are very correlated, the 

climate Lee-Carter is slightly better than the classic Lee-Carter model (73.94% against 73.77%). 



MILLIMAN WHITE PAPER 

Modelling the impact of climate risks on mortality 8 December 2022 

FIGURE 10: 𝐑 
𝟐 FITTING COEFFICIENTS BETWEEN THE TWO MODELS  

 

The 𝑅 
2 coefficients between the original death rates and the Lee-Carter models are plotted in Figure 10. The two 

models are similar in the fit, but one can see that, on high ages, the climate model is better than the original Lee-

Carter model. However, contrary to France, the 𝑅 
2 coefficient of both the climate Lee-Carter model and the 

classic model is much lower, especially for young ages. 

As for the French case study, it can be observed that the climate Lee-Carter model has a lower AIC/BIC than its 

classic version, as shown by the table in Figure 11. 

FIGURE 11: AIC/BIC BETWEEN THE TWO MODELS 

CRITERION CLASSIC LC CLIMATE LC 

AIC  34,792   34,715  

BIC  36,306   36,229  

Projections – results for French case study 
The classic method to project a Lee-Carter model is to use an autoregressive process. The temporal parameter 

𝜅𝑡 is simulated according to the following equation: 

𝜅𝑡 = 𝜅𝑡−1 + 𝜃 + 𝜀𝑡 

where 𝜀𝑡 ∼  𝒩(0, 𝜎2). 

To calculate the mortality shocks for the climate model, an autoregressive model is applied. The projection 

method must consider both time parameter 𝜅𝑡 and the climate variables matrix 𝑋𝒕 . This method allows us to 

jointly project the three-time series according to the correlations between them: 

(𝑋𝑡 , 𝜅𝑡) = (𝑋𝑡−1, 𝜅𝑡−1) + (𝜇1, 𝜇2) + 𝐶(𝜖𝑡
1, 𝜖𝑡

2) 

The vector (𝜇1, 𝜇2) is the mean vector of the time series (𝑋𝑡, 𝜅𝑡), and 𝐶 is the Cholesky decomposition of the 

variance-covariance matrix Σ where Σ = 𝐶𝐶′. This method is used for the first year only and prolonged by mean 

to the following years (the noise is set to 0).  

We performed 2,500 simulations for ages from 40 to 90 years old, according to the previous method with a one-year 

time horizon.  
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The one-year projections of the two models for death rates in France (Figure 12) are very similar due to the 

high correlation rate of the model calibration. The differences are visible at 65 years old and higher: the plot of 

the impact of the climate cause shows this fact more obviously (Figure 13). Before 65 years old, the cause 

impact is negligible. For the ages above 65 years old the effect of high temperatures is preponderant and 

increases with age.  

 

FIGURE 12: ONE-YEAR PROJECTION – FRANCE 

 

FIGURE 13: IMPACT OF CLIMATIC CAUSE – FRANCE 

 

Shock calculation 
METHODOLOGY 

Step 1: The calibration method used to compute shock values is the one presented by EIOPA. It combines three steps, 

recalled in [4]. Simulations of 2,500 future mortality tables are performed at a one-year horizon (projection part). 

Step 2: Life expectancies are calculated for each attained age given the survival function determined by the 

simulated mortality tables. The 0.5th percentile realisations of the cohort life expectancies are then computed.  

Because mortality sensitivity can be captured by changes in life expectancies, such optimal stresses can be 

determined by analysing their impact on life expectancies. For each age, the optimal mortality shock is defined 

as the stress which matches the shocked central life expectancy with the 0.5th percentile of the not shocked 

life expectancy.  

The age-dependent shocked life expectancy is defined according to: 

𝑒𝑥
ℎ(𝑡) =

1

2
+ ∑ ∏(1 − (1 + ℎ)𝑞𝑥+𝑠(𝑡 + 𝑠))

𝑘−1

𝑠=0

+ ∞

𝑘=1

 

Step 3: For each age, the optimal mortality shocks are defined as the shocks that minimise the distance between 

the life expectancy in the central scenario and the quantile realisation.  

ℎinf(𝑥) = argmin
ℎ∈]−1,1[

(𝑒𝑥
ℎ(𝑡) − 𝑒𝑥

0.5%(𝑡))
2

  

Through this process, mortality shocks are obtained for each age. 
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RESULTS FOR FRANCE  

As expected, the mortality shock values (Figure 14) obtained with the model that takes into account the climate 

risk are greater than the classic shocks, and a peak between 60 and 70 years old can be observed.  

On the whole interval, the climate shocks are 6.12% greater on average than the classic shocks. On the 40 to 65 

years old interval, the average classic shocks are 4.62% against 9.32% for the climate shocks. The average 

difference on the 65 to 90 years old interval is 7.61% for the climate shocks. 

FIGURE 14: MORTALITY SHOCK VALUES 

 

Case of vector-borne diseases 
WHAT ARE THEY? 

Vector-borne diseases are illnesses that are transmitted by arthropod vectors, which include mosquitoes, ticks 

and fleas. These vectors can carry infective pathogens such as viruses, bacteria and protozoa, which can be 

transferred from one host to another.  

Vector-borne diseases account for more than 17% of all infectious diseases worldwide, causing more than 

700,000 deaths annually, with more than 50% of the world’s population currently estimated at risk of infection 

with a vector-borne pathogen [5]. 

Mosquito-borne diseases are a key group of concern as they include both very high burden and important emerging 

diseases, including human malaria (around 212 million cases per year), dengue (around 96 million cases per year), 

chikungunya (around 693,000 cases per year) and Zika virus disease (around 500,000 cases per year).5 

A MODELLING APPROACH EXAMPLE 

Causes of death with too few deaths, such as vector-borne diseases, cannot be modelled by a Lee-Carter model: 

alternative models more adapted to the specificities of the cause of death must be developed. 

Following [6], mosquito-borne diseases can be modelled by a refined SIR-type model. Unlike classic SIR-type 

models, two populations have to be modelled: human individuals and mosquito vectors. 

 Human individuals: They start in a susceptible state 𝑆ℎ and then can be infected through bites of infectious 

mosquito vectors 𝐼𝑚 at rate 𝑎 and with the probability 𝑏. When infected, these individuals change to the 

exposed state 𝐸ℎ. They become infectious and symptomatic (𝐼ℎ
1) with the probability 𝜔ℎ(1  −  𝑝𝑎), or 

asymptomatic (𝐼ℎ
2) with the probability 𝜔ℎ𝑝𝑎. Finally, infectious individuals become recovered 𝑅 at rate 𝜎 and 

cannot be infected again.  

  

 
5 Data are from WHO. 
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 Mosquitoes: If a susceptible mosquito vector 𝑆𝑚 bites an infectious human at rate 𝑎, the mosquito can 

become exposed (𝐸𝑚) with the probability 𝑐 and then infectious (𝐼𝑚) at the rate 𝜔𝑚, characterised by the 

inverse of the extrinsic incubation period. Note that the infection probability of a susceptible mosquito 

exposed to the pathogen 𝑐 is dependent on both the local temperature and the degree of adaptation of the 

mosquito to its environment. 

FIGURE 15: COMPONENT DIAGRAM FOR A VECTOR-BORNE DISEASE SIR-TYPE MODEL 

 

VECTOR-BORNE DISEASES AND CLIMATE CHANGE 

There are many signals that climate change has already affected vector-borne disease transmission or spread. For 

example, a time-series analysis of monthly malaria cases in the highlands of Colombia and Ethiopia provided 

evidence for a shift in the altitudinal distribution of malaria towards higher altitudes in warmer years, suggesting that, 

in the absence of intervention, the malaria burden will increase at higher elevations as the climate warms [7]. 

Besides, in the US, higher cumulative growing degree days, lower cumulative precipitation and lower saturation deficit 

(inversely related to humidity) were found to be associated with an earlier start to the Lyme disease season [8]. 

Climate change is likely to have both short-term and long-term effects on vector-borne disease transmission and 

infection patterns. However, following [9], predicting how future climate change will affect vector-borne diseases 

seems very challenging due to numerous uncertainties, including: 

 Future climate change will depend on human actions to reduce greenhouse gas emissions 

 Prediction would need to take into account changes in non-climate drivers such as social and environmental 

ones, many of which are also unpredictable 

In order to make projections, models can be based on alternative scenarios to have an understanding of a range 

of possible futures. Projections about the future incidence and distribution of specific vector-borne diseases can 

be made by associating a future climate change scenario with a vector-borne disease model that has been 

validated using historical data. The approach can also incorporate scenarios for non-climate drivers such as 

travel, socioeconomic factors or public health advances.  

According to [10], although the effects of climate change on mosquito-borne disease risk are significant, the 

influence of other global change processes and their interactions occur over shorter timescales and are likely to 

have a greater impact in the immediate future. Considering the effect of climate change in isolation might result in 

inaccurate predictions of mosquito-borne diseases risk. This issue is compounded by the fact that many studies 

do not account for the multiple sources of uncertainty in their predictions, including the data (e.g., health, 

environmental, socioeconomic), future global change scenarios (e.g., climate emission scenarios) and the 

structure of the models. 
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